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Abstract: 1 

We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) 2 

with global flux tower observations to validate states, surface fluxes, and coupling indices 3 

between land and atmosphere. Models clearly under-represent the feedback of surface 4 

fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and 5 

may over-represent the connection between soil moisture and surface fluxes (the terrestrial 6 

leg). Models generally under-represent spatial and temporal variability relative to 7 

observations, which is at least partially an artifact of the differences in spatial scale between 8 

model grid boxes and flux tower footprints. All models bias high in near-surface humidity 9 

and downward shortwave radiation, struggle to represent precipitation accurately, and 10 

show serious problems in reproducing surface albedos. These errors create challenges for 11 

models to partition surface energy properly and errors are traceable through the surface 12 

energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles 13 

(first harmonic) are generally well reproduced, but the biases in means tend to reflect in 14 

these amplitudes. Interannual variability is also a challenge for models to reproduce. Our 15 

analysis illuminates targets for coupled land-atmosphere model development, as well as the 16 

value of long-term globally-distributed observational monitoring.  17 

18 
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1. Introduction 19 

Many LSMs were developed and pressed into service during the 1980s and 1990s to 20 

provide lower boundary conditions for the atmospheric GCMs used in climate and weather 21 

simulation and prediction (Santanello et al. 2017). This occurred at a time when 22 

observations of key land surface variables, and the coupled processes that link the water and 23 

energy cycles between the land and atmosphere, were extremely limited. As a result, 24 

performance of coupled LSM-GCM systems has been sub-optimal (Dirmeyer et al. 2017).  25 

The necessary observational data sets for validation are only recently becoming available; 26 

datasets that combine co-located measurements of land surface states, surface fluxes, near-27 

surface meteorology, and properties of the atmospheric column. Early field campaigns (e.g., 28 

Sellers et al. 1992, 1995; Famiglietti et al. 1999; Jackson and Hsu 2001; Andreae 2002) 29 

provided observations that helped advance theory and model parameterization 30 

development, but their short periods of operation meant collected data provided limited 31 

sampling of the phase-space of land-atmosphere interactions, rarely quantifying interannual 32 

variability. In the mid-1990s, networks of observing stations began to be established and 33 

maintained, providing long-term data sets. A growing number of soil moisture monitoring 34 

networks have been established. Their data have been collated, homogenized and 35 

standardized by two separate efforts (Dorigo et al. 2011, 2013, 2017; Quiring et al. 2016). 36 

Those data sets were used by Dirmeyer et al. (2016) in a first-of-its-kind multi-model multi-37 

configuration assessment of soil moisture simulation fidelity.  38 

Simultaneously, efforts began in the ecological community to collect surface flux data over 39 

a variety of biomes (FLUXNET; Baldocchi et al 2001). Over time, in consultation with 40 

interested scientific communities, FLUXNET expanded their instrumentation suite to 41 

measure soil moisture, ground heat flux, and four-component radiation, allowing detailed 42 
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closure of the surface energy balance. Rigid standards for data formatting and dissemination 43 

within and across regional networks was lacking, so a global standardized and quality-44 

controlled subset of data from many FLUXNET sites was produced (“La Thuile FLUXNET 45 

dataset”, cf. http://www.fluxdata.org) covering multiple links in the coupled land-46 

atmosphere process chain (Santanello et al. 2011). The La Thuile data set enabled a greater 47 

degree of model validation (e.g., Williams et al. 2009; Bonan et al. 2012; Boussetta et al. 2013; 48 

Melaas et al. 2013; Balzarolo et al. 2014; Purdy et al. 2016). 49 

In this study, we employ the updated FLUXNET2015 synthesis data set, (Pastorello et al. 50 

2017) expanding the multi-model multi-configuration study of soil moisture simulations in 51 

Dirmeyer et al. (2016) to a global assessment of surface energy and water balance 52 

simulations, and basic metrics of land-atmosphere coupling. Section 2 describes the 53 

observational data and models examined. The next three sections present validations of 54 

model annual means, annual cycles, and coupling metrics. We then discuss some of the 55 

pathological model behaviors that emerge from the analysis and present conclusions. 56 

Throughout the paper we present synthesis figures. Detailed scatter plots showing results 57 

across all FLUXNET2015 sites for each model are consigned to the Supplement.  58 

 59 

2. Data and Models  60 

The range of dates of data varies considerably among model simulations, and also 61 

between individual observational sites. We analyze spatial variability and compare only 62 

climatologies (annual means or mean annual cycles) in order to minimize the effect of such 63 

asynchronicities, and present a quantification of interannual variability. It is not the intent 64 

of this study to validate model simulations of specific events, but rather their overall coupled 65 

land-atmosphere behavior. Note also that many coupling metrics, including those used here, 66 
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can be calculated for LSMs from a combination of forcing and model output, even though the 67 

LSMs are not coupled to GCMs.  68 

2.1 Observed data 69 

In situ measurements of near surface meteorological variables, surface fluxes and soil 70 

moisture used for model validation come from the November 2016 version of the 71 

FLUXNET2015 station data set. Daily, monthly and yearly data have been used; processing 72 

of the meteorological, radiation, heat flux and surface hydrologic data including gap-filling 73 

are described by Reichstein et al. (2005) and Vuichard and Papale (2015). Only the Tier 1 74 

(open access) data are used in this study (see Table S1 for a complete list of sites) – Figure 1 75 

shows the spatial distribution of sites and some of the key characteristics regarding data 76 

availability. 166 sites provide 1242 site-years of data, but coverage is concentrated in the 77 

mid-latitudes and particular underrepresentation in the tropics. 78 

The variables processed for this analysis include surface pressure, near surface air 79 

temperature and vapor pressure deficit, precipitation, four-component and net radiation, 80 

surface sensible and latent heat fluxes (gap-filled following the method of Reichstein et al. 81 

2005 and energy balance closure-corrected) and soil water content measured at the first 82 

(shallowest) sensor. There is no consolidated information on the depth of the shallowest 83 

sensor across all sites, but typically it is at 5cm or 10cm below the surface. Vapor pressure 84 

deficit is converted to specific humidity using the Clausius-Clapeyron relationship. We have 85 

used the provided FLUXNET2015 data at the corresponding time intervals for each 86 

calculation: yearly data for annual means, monthly data for annual cycles, and daily data for 87 

calculating coupling indices.  88 

In addition, we examine a number of gridded global precipitation products for 89 

comparison to FLUXNET2015 sites. These are listed in Table S2.  90 



 4 

2.2 Model systems 91 

Four global modeling systems are evaluated; two from operational forecast centers and 92 

two that are primarily used for research. The operational systems are from the U.S. National 93 

Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental 94 

Prediction (NCEP) and the European Centre for Medium-range Weather Forecasts 95 

(ECMWF). The research systems are from the U.S. National Aeronautics and Space 96 

Administration (NASA) Global Modeling and Assimilation Office (GMAO) and the U.S. 97 

National Center for Atmospheric Research (NCAR). 98 

Table 1 summarizes the model components and configurations. Generally, each modeling 99 

system is interrogated in three different configurations: 1) LSM only (offline), driven by 100 

gridded observationally-based meteorological analyses including downward radiation; 2) 101 

LSM coupled to GCM in a free-running mode where the coupled system evolves 102 

unconstrained after initialization; 3) Reanalysis, where the coupled LSM and GCM are 103 

constrained by data assimilation at diurnal or sub-diurnal increments to represent the actual 104 

historical evolution of state variables. The NCAR model system does not have an associated 105 

reanalysis, so to keep the four-by-three matrix filled, two different reanalyses from GMAO 106 

are included. Note that when the coordinates for a FLUXNET2015 site lie within a model’s 107 

ocean grid cell, it is excluded from comparisons for that model. Thus, the number of stations 108 

compared vary from model to model depending on resolution and the land-sea mask. 109 

2.2.1 NCEP 110 

Data for the offline configuration comes from an author-produced simulation using Noah 111 

LSM version 2.7.1 (Ek et al., 2003, Mitchell, 2005) driven by 3-hourly gridded meteorological 112 

data from the Terrestrial Hydrology Research Group at Princeton University (Sheffield et al., 113 

2006). The free-running coupled land-atmosphere simulation consists of a subset of 48 years 114 
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from a 420 year long current climate simulation of CFSv2 initialized in 1980 (Shukla et al. 115 

2017). The coupled simulation is unique among the model systems in that it also includes a 116 

coupled ocean component. However, this should have very little effect on the local coupled 117 

land-atmosphere behavior of the model. Years 2101-2148 of the simulation are used, but the 118 

calendar dates have no real meaning in a fully coupled climate model so far from the initial 119 

state, wherein attributes such as atmospheric composition, solar intensity, orbital 120 

parameters, etc., are held constant at late 20th century values. The latest NCEP reanalysis is 121 

also examined (CFSR; Saha et al. 2010), which combines a global land data assimilation 122 

system derived from the NASA Land Information System (LIS; Peters-Lidard et al., 2007), 123 

driven by a blended global precipitation analysis (Xie and Arkin 1997; Xie et al. 2007), used 124 

to update the coupled analysis cycle once per day over the period 1979-2009.  125 

2.2.2 GMAO 126 

Two reanalyses are included for GMAO; version 1 and version 2 of the Modern-Era 127 

Retrospective Analysis for Research and Applications (MERRA; Rienecker et al. 2011, 128 

Reichle et al. 2017a). MERRA data cover the period 1980-2015. MERRA-2 is the current 129 

state-of-the-art reanalysis covering 1980-2015 (Molod et al. 2015, Gelaro et al. 2017), and is 130 

the source of most of the meteorological forcing data for the offline simulation of the 131 

Catchment LSM v25 C05 (GMAO 2015a,b). As part of the MERRA-2 reanalysis, the GCM-132 

generated precipitation is corrected with observations-based precipitation before it reaches 133 

the land surface (Reichle et al. 2017b); the reanalysis meteorological fields thus feel the 134 

observed precipitation rates indirectly through the surface fluxes. Additionally, a global 36-135 

year offline Catchment simulation on the MERRA grid and a 16-year coupled GEOS5-136 

Catchment simulation at half-degree resolution with prescribed observed SSTs were 137 

generated for this comparison. 138 
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2.2.3 NCAR 139 

There is no operational reanalysis produced with the NCAR Community Earth System 140 

Model (CESM). However, CESM is widely used for research in the academic community, and 141 

we have generated offline and coupled simulations for this comparison. The offline 142 

simulation uses version 4.5 of the Community Land Model (CLM; Lawrence et al. 2011) 143 

driven with forcing spanning 1991-2010 from version 4 of the blended and gap-filled 144 

CRUNCEP (Viovy 2013) 0.5° data set (available at: 145 

https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CRUNCEP.v4.html) aggregated 146 

to the nominal 1° GCM resolution. A simulation with CLM4.5 coupled to CAM4 in CESM1.2.2 147 

has been produced spanning 1991-2014 with specified climatological SSTs.  148 

2.2.4 ECMWF 149 

The offline simulation from ECMWF is with Cycle 43R1 of the Hydrology Tiled ECMWF 150 

Scheme of Surface Exchanges over Land (HTESSEL) run at ~16km resolution based on a 151 

cubic octahedral global grid (TCo639) for the period 1979-2015. This offline simulation 152 

follows ERA-Interim/land configurations closely (see Balsamo et al. 2015), forced by ERA-153 

Interim meteorology and fluxes with an altitude correction applied to temperature, humidity 154 

and surface pressure. This offline simulation is used to initialized the land state of the 155 

operational ECMWF hindcasts. The coupled simulation comes from the Athena Project 156 

(Kinter et al. 2013) for 1961-2007 where an older version of HTESSEL is coupled to IFS Cycle 157 

32R3 at a similarly high native horizontal resolution and specified observed SSTs, but the 158 

data has been post-processed to a 1.125° uniform grid. ERA-Interim (Dee et al. 2011), 159 

spanning 1979-2015, provides the reanalysis configuration of data for the comparison, 160 

which used TESSEL prior to hydrology upgrades. 161 

 162 
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3. Annual Means  163 

The comparison of models to FLUXNET2015 observations of annual means amounts to an 164 

assessment of model ability to reproduce global spatial patterns (within the limitations of 165 

the uneven distribution of station locations) of the variables’ time averages. For the offline 166 

LSM simulations, meteorological forcing data are specified from gridded data sets, so their 167 

correlation to FLUXNET2015 observations is not a pure reflection of model performance as 168 

the forcing data constrain LSM behavior. Similarly, for the reanalysis products, performance 169 

reflects a combination of model characteristics, data assimilation techniques and the 170 

distribution and quality of the data assimilated. Assimilation of observational data 171 

constrains the coupled land-atmosphere model behavior to some degree. While the free-172 

running model simulations provide an unabridged assessment of model performance, 173 

results from the other modes of simulation are nevertheless enlightening. 174 

As an indicator of observational uncertainty and the impact of comparing model grid box 175 

values to field sites, we first note how a number of gridded observational precipitation 176 

products and the reanalyses validate against precipitation measurements at FLUXNET2015 177 

locations. Figure 2 shows mean (dots) and span (whiskers) of annual precipitation totals, 178 

where the abscissa always corresponds to measurements from the FLUXNET2015 sites. For 179 

most sites, the observational products (top two rows of Fig. 2) cover the entire time span of 180 

FLUXNET2015 observations (see Table S2 for details). All reanalyses (bottom row of Fig. 2) 181 

except CFSR span the FLUXNET2015 period. Several statistics of spatial agreement are 182 

shown: Pearson’s product moment correlation coefficient (rp), Spearman’s rank correlation 183 

coefficient (rs), root mean square error (RMSE), slope of the best-fit linear regression of Y on 184 

X (Slope) and the fraction of total stations (labeled “Span Diag” in Fig. 2) where the span of 185 

the individual annual totals from the gridded products (vertical whiskers) overlap the span 186 
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from FLUXNET2015 sites (horizontal whiskers). The last statistic tests the possibility that 187 

the FLUXNET2015 observations and gridded estimates do not come from distinct 188 

populations, i.e. their ranges overlap. 189 

Estimates from gridded observational data sets, which range in spatial resolution from 190 

0.25° (MSWEP, TRMM) to 2.5° (GPCP), provide a plausible upper bound to the accuracy we 191 

could expect from gridded Earth system models. For the 166 (or fewer) FLUXNET2015 sites 192 

compared, which admittedly represent a rather uneven sampling of global terrestrial 193 

precipitation, three observational products score at the top: MSWEP, CPC-Uni and U.Del. 194 

Each has a Pearson’s correlation of nearly 0.8, a rank correlation between 0.8-0.9, and the 195 

highest number of stations whose ranges span the diagonal X=Y line. The lower limit for 196 

RMSE across these sites is about 240mm. Note that all gridded products underestimate the 197 

slope, indicating the inability of large area averages to resolve local variations in average 198 

precipitation. 199 

MERRA-2 performs on par with the best gridded observed products, namely because it 200 

reports a bias corrected precipitation that is used as part of the assimilation process instead 201 

of model-generated precipitation as an input to the LSM (Reichle and Liu 2014). Thus, it is 202 

effectively another gridded observational data set for precipitation. Figure S1 compares the 203 

precipitation predicted by the model physical parameterizations in MERRA-2 alongside the 204 

corrected version in the same fashion as Fig 2. The correction greatly reduces bias, cuts 205 

RMSE by one third, slightly improves spatial correlations, and increases the number of 206 

stations spanning the diagonal by 28%. CFSR significantly underperforms other reanalyses 207 

at FLUXNET2015 locations. 208 

Precipitation is among the most difficult quantities for models to simulate. We expect 209 

among near surface meteorological variables the lowest correlations and largest coefficient 210 
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of variation for precipitation.  It also has many observationally-based data sets to choose 211 

from, providing a robust estimate of skill to be expected from comparing point 212 

measurements to gridded data sets. Figure 2 provides generous thresholds, particularly for 213 

correlations, to keep in mind when assessing model simulations of the terms of the surface 214 

water and energy balance.  As shown below, correlations of 0.7-0.8 are a challenge for models 215 

to attain for precipitation, as well as some other water and energy budget terms.  216 

Among near surface meteorology (e.g., temperature and specific humidity) and 217 

downward surface fluxes (including shortwave and longwave radiation), precipitation has 218 

the greatest small-scale variability on monthly to annual time scales, and is thus the most 219 

difficult land surface “forcing” to replicate at the FLUXNET2015 sites. Figures S2-S6 show 220 

the scatters and statistics for the models listed in Table 1 for these five variables. Here, the 221 

restriction that the years of the models match those at each FLUXNET2015 site is lifted, and 222 

the climatologies of the complete data sets are compared. Not surprisingly, the global 223 

distribution of annual mean temperature is very well reproduced by the models (Fig. S2), 224 

with 88-96% of the observed variance explained. Observed specific humidity is only slightly 225 

less well correlated among the models (Fig. S3), but there is a consistent positive bias 226 

relative to FLUXNET2015 measurements. Patterns of annual mean downward radiation 227 

(Figs. S4 and S5) are well simulated, with a tendency for a slight negative bias in longwave 228 

radiation (Fig. S5), and a stronger positive bias in shortwave radiation across models (Fig. 229 

S4), consistent with other assessments of model shortwave errors that depend on GCM 230 

radiative transfer parameterizations (cf. Slater 2016). Precipitation shows the least 231 

agreement; note the bottom row of Fig. S6 is not identical to that of Fig. 2 because the years 232 

compared differ. Nevertheless, the results are similar. We can consider MERRA-2 as 233 

representing the upper limit of comparison for annual precipitation when the periods do not 234 

match between models and observations. Offline Catchment actually performs slightly better 235 
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than MERRA-2, and CFSv2 is generally the poorest performing model system in the set. Free-236 

running climate models understandably perform worse than either reanalyses or offline LSM 237 

simulations, as they are least constrained by observational data. In the case of CFSv2, there 238 

are essentially no constraints within the Earth system as an ocean model is coupled; other 239 

free-running simulations have specified SSTs. 240 

Precipitation is a major source of error at the land surface, but so are elements of the 241 

radiation budget. We employ Taylor diagrams to synthesize the statistics of correlation 242 

across FLUXNET2015 sites; RMSE and standard deviation are normalized by observed 243 

values. Figure 3 shows the global distribution of annual mean downward radiation terms is 244 

well simulated across all model configurations, with downward shortwave radiation 245 

performing slightly better than downward longwave radiation. Recall for the LSM-only 246 

models, downward radiation is an input forcing, and the quality of those data sets can vary 247 

significantly (Slater 2016). However, the distribution of upward shortwave radiation is 248 

rather poorly simulated, with the NCEP models showing the worst correlations, and the 249 

NCAR models the best (yet explaining less than half of the variance). There is also a strong 250 

tendency to under-represent the spatial variability (normalized standard deviations less 251 

than 1) of downward shortwave radiation. This degrades simulation of net radiation, which 252 

has consistently lower correlations than downward radiation terms, yet uniformly better 253 

than upward shortwave radiation. The overlap of the spans of annual mean values from 254 

models and observations (size of the dots) generally decrease from shortwave down to 255 

longwave down to shortwave up. 256 

Figure 3 implies discrepancies in the representation of surface albedo across models at 257 

FLUXNET2015 sites. We show a Taylor diagram for calculated albedo in Fig. 4. As there are 258 

many sites at relatively high northern latitudes that experience snow cover for some part of 259 
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the year, snow albedo could specifically be a problem. However, a plot of only the JJA albedo 260 

verification shows boreal summer generally has even lower fidelity, and systematically low 261 

spatial variability, compared to the annual mean. The overlap between the spans of annual 262 

mean albedos range among the models from 16% to 38% of FLUXNET2015 sites, but for JJA 263 

they span only 13-24%. 264 

The low variability could be explained by the fact that most LSMs, whether stand-alone or 265 

coupled, have a simple parameterization of albedo based on properties of a small number of 266 

vegetation and soil types, often specified as a climatological seasonal cycle. CLM actually 267 

calculates surface albedo based on a number of properties including vegetation density and 268 

zenith angle of the sun, which may lead to the somewhat better performance of the NCAR 269 

models. As described later, the offline NCEP LSM (identified as NL) specifies a multi-year 270 

satellite-derived monthly green vegetation fraction as a boundary condition that appears in 271 

Fig. 4 to enhance variability, while its positive biases have been noted by Xia et al. (2012). 272 

Furthermore, discrepancies between grid box average albedo and local conditions at field 273 

sites, including the effect of vegetation differences and soil moisture on albedo (Zaitchik et 274 

al. 2013), could add spatial “noise” to the FLUXNET2015 values relative to what models are 275 

representing. Nevertheless, such discrepancies lead to a degradation in the representation 276 

of surface available energy that is partitioned between sensible, latent and ground heat 277 

fluxes. Even an otherwise “perfect” LSM could not produce the right values of these fluxes if 278 

net radiation is incorrect. Coupled with errors in precipitation, which affect available soil 279 

moisture and thus Bowen ratios, LSMs are at a compounded disadvantage in simulating the 280 

surface water and energy budget terms.  281 

In Fig. 5 we correlate across the stations the mean errors in key water and energy cycle 282 

quantities and present a schematic representation of the relative coupling or connectedness 283 
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exhibited between terms. This also suggests how errors in the simulation or specification of 284 

one term can propagate to others through the land-atmosphere coupling process chain (cf. 285 

Santanello et al. 2011). rs is generally larger than rp because it does not overemphasize 286 

outliers, thus is used for this comparison. Ratios show the fraction of models with 287 

correlations at the 90% confidence level, and p-values are based on the average correlation 288 

across models. Note the number of included stations varies depending on the availability of 289 

observed data (recall from Fig. 1 that a number of FLUXNET2015 sites do not allow for 290 

albedo estimations) and among models depending on whether the corresponding grid box 291 

is water or land. Furthermore, the data saved from the free-running ECMWF model 292 

simulations (EC) do not allow for estimation of albedo, so 11 models are compared for 293 

albedo.  294 

Unsurprisingly, we find surface net radiation errors correlate strongly to albedo errors, 295 

with 11 of 11 models registering significant correlations (two-tailed p-values < 0.05) and 296 

the multi-model average correlation across 114-118 sites has a p-value of 4x10-7. For net 297 

radiation versus precipitation, only 2 of 12 models (CL and M1) show significant correlation 298 

across 144-151 sites and p=0.55 for the multi-model average, so no direct arrow is drawn 299 

in Fig. 5. Note that precipitation errors arise not only from misrepresentation of land-300 

atmosphere interactions, but also from the parameterization of dynamic and 301 

thermodynamic processes (so-called “model physics”) in the GCM. 302 

FLUXNET2015 reports both raw and Bowen-ratio corrected heat fluxes. Corrected fluxes 303 

are available at fewer than 100 of the sites (two-tailed p=0.05 for correlations |𝑟| ≳0.2, 304 

compared to |𝑟| ≳0.16 for the full set of sites), but generally correspond better to the models 305 

than uncorrected fluxes, which do not close the surface energy balance (cf. Figs. S9-S12). 306 

Regardless, the same story emerges with either set of fluxes: precipitation errors correlate 307 
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significantly to latent heat flux errors (p=0.02 in Fig. 5) but not sensible heat flux errors 308 

(p=0.31). Meanwhile, albedo errors are very strongly linked to sensible heat flux errors 309 

(p=7x10-5) but not latent heat flux errors (p=0.69). Evaporative fraction (EF; the fraction of 310 

sensible + latent heat flux accounted for by the latent heat flux) relates strongly to both, but 311 

more strongly to errors in albedo (p=0.003) than precipitation (p=0.05). Consistently, 312 

correlating EF errors to the heat flux errors (black two-way arrows) demonstrates more 313 

variance explained by sensible heat flux than latent heat flux. Finally, LCL errors relate 314 

strongly to precipitation errors (p=2x10-5) but are marginally significant in relation to 315 

albedo errors (p=0.06). LCL has a prevalent negative bias (Fig. S8) reflecting the positive 316 

biases in specific humidity.  317 

This analysis shows that models have troublesome errors in both the surface water and 318 

energy cycles, which make their way into the land-atmosphere coupling process chain. As a 319 

result, the degree to which weather and climate models correctly simulate feedbacks of land 320 

surface anomalies onto the atmosphere may be cast into some doubt. However, the origins 321 

of several sources of error have been identified and their alleviation can be pursued. In 322 

section 5 we will examine directly model fidelity in simulating metrics of land-atmosphere 323 

coupling.  324 

 325 

4. Mean Annual Cycle 326 

The next criterion for models, beyond simulating the annual means among FLUXNET2015 327 

sites, is reproducing the annual cycle. The first harmonic is fit to the 12 monthly means for 328 

each variable, determining phase and magnitude (half of valley-to-peak distance) using a 329 

standard Fourier transform. Errors in phase and magnitude at each station, quantified across 330 

all stations with similar metrics as the annual mean, indicate skill in simulating the annual 331 
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cycle. Amplitude errors are displayed in conventional scatter diagrams (see Figs. S15-S24), 332 

but to display information for phase errors, we have configured the classical scatter diagram 333 

in a polar projection (see Figs. S25-34; the caption of Fig. S25 gives a detailed description of 334 

those plots). The whiskers in the supplemental figures again show models frequently display 335 

a smaller range of year-to-year variability than data from FLUXNET2015 sites. This may be 336 

partially explained by the scale difference (point measurements will vary more than grid-337 

box averages) but is also likely due to the overly deterministic nature of many model 338 

parameterizations (Palmer 2012). 339 

Taylor diagrams summarize the results across models. We focus on depictions of energy 340 

budget terms, as they reveal some of the main issues among models. Figure 6 shows model 341 

performance in simulating the amplitudes of the annual cycles of net radiation, sensible and 342 

latent heat fluxes across FLUXNET2015 sites. All model products demonstrate similar skill 343 

for net radiation, clustered between 0.64-0.78 correlation and a tendency toward too large 344 

an annual cycle. Only the offline NCEP and coupled ECMWF models have a negative bias in 345 

amplitude. Latent heat flux simulations show lower skill for every model, clustering between 346 

0.28-0.43 for correlations. At the stations where energy balance corrected fluxes are 347 

provided, correlations improve to 0.37-0.50 (not shown). The positive bias is not so 348 

pervasive for latent heat; rather it appears the positive bias in net radiation tends to be 349 

expressed in the sensible heat term. There is also a much larger spread among models for 350 

sensible heat, both in terms of correlation (0.14-0.54) and normalized standard deviation 351 

(0.78-1.50). 352 

The models’ skill in representing the phase of the annual cycle has a similar distribution 353 

(Fig. 7). The phase of net radiation is best represented, latent and sensible heat have spatial 354 

correlations of phasing between ~0.8-0.92 with sensible heat phases having slightly lower 355 
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fidelity in general. It is interesting as the general consensus is that sensible heat flux is a 356 

simpler process to model than latent heat flux, yet it has been shown in other contexts that 357 

LSMs struggle more to simulate sensible heat flux (e.g., Best et al. 2015).  358 

The Taylor diagram for the annual cycle of albedo (Fig. 8) shows very similar correlations 359 

of the yearly amplitude between models and observations (0.50-0.71) but a large range in 360 

standard deviation;  Noah v2.7.1 (NL) shows a particularly high value contributing to large 361 

RMSE. The phase is better represented by all models, but interestingly the standard 362 

deviations are uniformly over-estimated. Most models now use global MODIS-based data 363 

sets of albedo as either a parameter set or for calibration of surface radiative 364 

parameterizations, so the large inter-model spread and lack of obvious clustering within 365 

families of models is surprising.  366 

 367 

5. Coupling Metrics 368 

Correlations between land surface state variables and surface fluxes (the terrestrial leg of 369 

coupling) and between land surface fluxes and atmospheric states or properties 370 

(atmospheric leg) may indicate feedbacks. For instance in the terrestrial leg, positive 371 

(negative) correlation between soil moisture and latent (sensible) heat flux implies soil 372 

moisture control of fluxes (a moisture limited situation) as opposed to energy (net radiation) 373 

limited situations where atmospheric states control the fluxes. However, the variance in the 374 

driving term(s) must also be sufficiently large for a sensitivity of atmosphere to the land to 375 

have a consequential impact on climate, relative to other factors.  A coupling index I can be 376 

constructed from terms in either leg: 𝐼 = 𝜎(𝑏)𝑟(𝑎, 𝑏) = 𝜎(𝑎)
𝑑𝑏

𝑑𝑎
 where a is the forcing and b 377 

is the responding variable, 𝜎 is standard deviation in time, r is correlation in time, and the 378 
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linear regression slope of b on a is a measure of the sensitivity of b to a (Dirmeyer 2011, 379 

Dirmeyer et al. 2013). 380 

Figure 9 synthesizes the performance of the various model configurations regarding two-381 

legged coupling metrics linking soil moisture to boundary layer properties. The formulae for 382 

the coupling indices are indicated on the figure axes calculated from daily mean values. The 383 

terrestrial leg quantifies the combined sensitivity (correlation) of surface fluxes (here, latent 384 

heat flux) to land states (soil moisture) with variability (standard deviation) of the flux. The 385 

atmospheric leg links surface fluxes (sensible heat flux) to atmospheric states (LCL, which 386 

combines near surface temperature and humidity information). Larger values denote 387 

stronger feedback linkages. 388 

In each panel of Fig. 9, similar to the approach of Sippel et al. (2017), quantities are 389 

calculated for the three consecutive months that have the warmest average temperature 390 

according to the FLUXNET2015 data. We distinguish between positive values of each metric, 391 

which indicate the existence of feedbacks from land to atmosphere, from negative (no 392 

feedbacks) by coloring the four quadrants by their coupling regimes: red = both legs present 393 

and a full coupling pathway; green = the land leg is present, the atmospheric leg is missing; 394 

blue = atmospheric leg is present, land is missing; grey = neither leg present. The white dots 395 

show where FLUXNET2015 sites fall in this two-dimensional metric space. The colored dots 396 

are each model’s rendering of the metrics for the grid boxes containing the FLUXNET2015 397 

sites; the color indicates the quadrant according to the FLUXNET measurements. Thus, the 398 

more colored dots that fall in the quadrant with the matching color, the better the model is 399 

reproducing the global pattern of coupling regimes.  400 

The model centroid usually lies below and to the right of the observed centroid for a given 401 

coupling regime, meaning models tend to over-estimate the terrestrial coupling index (the 402 
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rightward offset), yet underestimate the strength of the atmospheric leg (the downward 403 

offset). Recall the number of FLUXNET2015 sites compared is not the same for each model. 404 

The percentage in each quadrant indicates how many of the FLUXNET2015 sites in that 405 

regime are correctly placed in the right quadrant. For instance, the CFS Reanalysis has 76% 406 

of the FLUXNET stations exhibiting both coupling legs (red) in the correct regime. However, 407 

there are clearly many dots of other colors also in the red quadrant, showing the model 408 

places many other stations erroneously in that regime. Interestingly, none of the models put 409 

the few sites with no warm-season coupling in the grey quadrant. Overall, the reanalyses 410 

perform best: a 56.5% overall hit rate for the fully-coupled regime versus 52.8 for coupled 411 

models, and 44.0% for offline LSMs; and for the atmosphere-only coupling regime 49.2% 412 

versus 33.0% for coupled models and 31.6% for offline LSMs.  413 

We have also examined performance of the models for their simulation of the observed 414 

FLUXNET2015 correlations and standard deviations (the two terms in the coupling indices) 415 

separately. As implied previously for the terrestrial leg, there is a positive bias in correlations 416 

for all models except for ERA-Interim (Table 2). Bias in the standard deviation of latent heat 417 

fluxes across all sites is small for most models, so most of the positive bias in coupling index 418 

comes from the correlation term. The model biases are even stronger in the anti-correlation 419 

between soil moisture and sensible heat flux (not shown). However, there is generally an 420 

even greater bias in correlations for the atmospheric leg (Table 2) paired in every model 421 

with an underrepresentation of the daily variability of the LCL. These two biases compound, 422 

leading to the strong underrepresentation of coupling in the atmospheric leg of land-423 

atmosphere interactions. 424 

There are several caveats to note. First, the notion of calculating the atmospheric coupling 425 

leg from offline LSM simulations is only partially justifiable. It is certainly possible to 426 
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calculate the correlations between surface fluxes and LCL height (which depends on near-427 

surface meteorological data supplied as forcing to the LSM), but there is no possibility for 428 

the fluxes to affect 2m temperature or humidity. Thus, this is more of a test of model 429 

consistency than a true diagnosis of coupling.  430 

Second, estimates of the correlation component of the coupling indices from observed 431 

data must be closer to zero than the true values in nature, because random measurement 432 

errors will degrade correlations (Robock et al. 1995). Thus, it is not necessarily wrong that 433 

models show a stronger terrestrial coupling leg than FLUXNET2015 data. The degree of 434 

impact can be estimated for variables such as soil moisture, whose auto-correlation time 435 

scales are much longer than the daily data interval (cf. Dirmeyer et al. 2016) but can be 436 

difficult to estimate from small samples or for other quantities. Nevertheless, the fact that 437 

models routinely underestimate the strength of the atmospheric leg runs counter to being 438 

attributable to random observational errors at FLUXNET sites, and likely represents real 439 

model bias. 440 

Finally, the difference in scale between flux tower measurements (typically 441 

representative of conditions in an area of a square kilometer or less) and model grid-box 442 

averages (here ranging from 200–2x104 km-2) can affect statistics. Dirmeyer et al. (2016) 443 

showed there was little sensitivity of estimates of temporal variations in daily soil moisture 444 

to spatial scale differences in the model grid box range, however, the same may not be true 445 

for other terms, or for correlations. The larger the averaging area, the smoother we should 446 

expect time series to be, potentially affecting estimation of coupling indices. 447 

 448 

6. Discussion and Summary 449 



 19 

We have confronted four different global model systems in multiple configurations (LSM 450 

only, LSM coupled to GCM, and reanalysis) with flux tower observations from 166 sites in 451 

the global FLUXNET2015 data set to determine how well they reproduce the spatial 452 

distribution of annual means and the annual cycle of state variables and terrestrial surface 453 

fluxes, and coupling indices between land and atmosphere. Returning to Table 2, there is a 454 

separation evident between the three classes of models. For the terrestrial leg of land-455 

atmosphere coupling, all models appear to overestimate correlations between soil moisture 456 

and latent heat flux, with the caveat discussed previously that correlations necessarily skew 457 

low when calculated from observed data. Nevertheless, assuming as much as a 50% 458 

reduction from true correlations, it appears the reanalyses do the best job at reproducing 459 

observed correlations, followed by the free-running models and last the uncoupled LSMs. 460 

There is a similar stratification for the standard deviation of latent heat flux: reanalyses very 461 

closely represent the observed temporal variability of this flux, while coupled models and 462 

stand-alone LSMs progressively underestimate it. For the atmospheric leg, represented by 463 

the coupling index between sensible heat flux and LCL height, all classes of models severely 464 

underestimate the correlation and the day-to-day variability in the LCL. Reanalyses again do 465 

the best job at correlations and stand-alone LSMs are the worst. Here, coupled models fare 466 

slightly better than reanalyses in representing LCL variance. Given that reanalyses are 467 

somewhat constrained by the assimilation of observations, the errors in those models do not 468 

manifest as freely, so it makes sense reanalyses should verify the best. On the other hand, 469 

offline LSMs lack some of the coupling we are trying to gauge. For example, surface sensible 470 

and latent heat fluxes cannot affect near surface temperature and humidity in such a 471 

configuration. This prescription of near-surface states interferes with the feedback 472 

processes.   473 
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General characteristics of note are that scatter diagrams of model versus FLUXNET2015 474 

quantities almost always show a linear regression slope indicating a wider range of variation 475 

in the observations. Models also tend to have lower interannual variability (length of 476 

whiskers) than observations suggest. These traits are consistent with scale differences 477 

between model grid cells and the area sampled by flux towers; model grid values represent 478 

areas at least 2-4 orders of magnitude larger, which particularly affects precipitation forcing. 479 

Thus, this difference is not a concern regarding model performance per se, but rather 480 

representativeness across scales.  481 

Another general characteristic is that the models verify better against the corrected 482 

surface fluxes and quantities derived from them; wherein observed sensible and latent heat 483 

values are adjusted to close the surface energy budget. This makes sense as models close 484 

surface energy (and water) budgets by design, whereas closure is not assured in an 485 

observational setting where a number of instruments, with different calibrations and error 486 

characteristics, contribute separate terms of the surface balances. However, when the 487 

propagation of model errors through the energy and water cycles are traced (Fig. 5), EF in 488 

models shows strong sensitivity to radiation errors, implying that conservation of Bowen 489 

ratio (and thus EF) as a means to correct observed heat fluxes and close the energy balance 490 

may not be the most efficacious.  491 

There are differences that do appear to reflect general model biases. All models and 492 

configurations show a positive bias in near-surface humidity (Fig. S3, S14), downward 493 

shortwave radiation (Figs. S4, S17) and a range of biases in downward longwave radiation 494 

(Fig. S5). Such radiation biases are a long-standing problem in global models (cf. Dirmeyer 495 

et al. 2006), and stem from problems in the parameterization of atmospheric radiative 496 

transfer, clouds and aerosols in GCMs. However, not all radiative errors are atmospheric in 497 
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origin – there is clear indication that LSMs struggle to represent the spatial and temporal 498 

variability of surface albedo (Figs. 4, 8).  499 

Combined with well-known difficulties models have in simulating precipitation (Figs. 2, 500 

S6, S15, S25), it becomes extremely challenging for models to partition available energy 501 

correctly at the surface between latent, sensible and ground heat fluxes, and to reproduce 502 

the spatiotemporal patterns of relationships between soil moisture, surface fluxes and the 503 

lower troposphere. Errors in latent heat flux generally correlate significantly to precipitation 504 

errors, while sensible heat flux errors relate strongly to surface albedo errors. Evaporative 505 

fraction errors connect to both, but more strongly to the energy (albedo – sensible heat flux) 506 

pathway than the water (precipitation – latent heat flux) pathway. Height of the LCL, which 507 

has a strong negative bias across all models related to the positive humidity bias, has errors 508 

that correlate strongly to the water cycle pathway, but also to the energy cycle pathway. 509 

The spatial distributions of the annual cycles are generally well reproduced for energy 510 

budget terms, except for upward shortwave radiation, related to the albedo problems 511 

discussed earlier. However, there is a tendency for too strong a seasonal cycle in net 512 

radiation, caused by excessive summertime downward shortwave radiation, and expressed 513 

more strongly in the annual cycle of sensible heat flux than latent heat flux. Models generally 514 

do very well representing the spatial distribution of the phasing of the annual cycle, even for 515 

precipitation (64-92% of variance explained) and soil moisture (40-61% of variance 516 

explained). 517 

Finally, despite the barriers described above to models’ capacity to represent the 518 

spatiotemporal distribution of land-atmosphere coupling, we find models often do a 519 

reasonable job. Some systematic biases are evident: models consistently over-estimate the 520 

strength of the terrestrial leg of coupling (namely, too strong a correlation between soil 521 
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moisture and sensible heat fluxes), yet even more clearly underestimate the strength of the 522 

atmospheric leg (both the correlation between surface fluxes and boundary layer properties, 523 

and day-to-day variability of boundary layer properties). Random observational error tends 524 

to reduce correlations between observed quantities, so it is possible that models are not 525 

greatly overestimating the terrestrial leg of coupling, or perhaps are not overestimating it at 526 

all. However, we find the time series at most FLUXNET2015 sites are too short to robustly 527 

estimate the random error effects on correlation – perhaps in another ten years we will be 528 

able to quantify these errors. Similarly, the spatial scale differences between observations 529 

and model output may contribute to the variance differences in the atmospheric leg, but 530 

disparity in correlations between surface fluxes and LCL could only be stronger than 531 

calculated here, not weaker, because of the effect of measurement error.  532 

LSMs forced by global gridded meteorology rather than local forcing from the tower sites 533 

themselves are handicapped to some degree (cf. Chen et al. 2017). So our most confident 534 

conclusion regarding land-atmosphere coupling is that models under-represent the 535 

feedback of surface fluxes on boundary layer properties at FLUXNET2015 sites. We find this 536 

unique data set has potential for model development and parameter optimization to alleviate 537 

biases in model configurations shown to mirror those used in forecasting applications (Orth 538 

et al. 2016, 2017). 539 

Overall, we conclude that many of the long-known problems and biases in global models 540 

of the land-atmosphere portion of the climate system still exist. Nevertheless, there is a fair 541 

degree of compensation among errors, such that model representations of land-atmosphere 542 

coupling often appear fairly good. Some targets for model improvement are clear, however, 543 

as coupling linkages suggest processes where problems may lie. The representation of 544 

surface albedo (LSM) and the quantities of downward radiation at the surface (GCM) need 545 
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improvement among the energy cycle terms, along with the partitioning of available energy 546 

between latent and sensible heat flux (a coupled model development problem). Precipitation 547 

errors remain large, and inconsistencies in representing soil moisture among models and 548 

between models and nature (cf. Koster et al. 2009) remain stubborn issues.  549 

As one might expect, reanalyses tend to perform better, as they are more constrained by 550 

observational data. LSMs run offline also benefit from meteorological forcing that is highly 551 

observational in origin, but can be handicapped by their lack of two-way interaction with the 552 

lower troposphere. It should be clear from the various figures that individual models 553 

perform better or worse at simulating specific facets of land-atmosphere interactions. 554 

However, we emphasize here the commonalities among models more than differences. This 555 

study is not primarily intended as a model inter-comparison, but rather a multi-model 556 

attempt to draw model-independent conclusions about the current state of performance of 557 

land-atmosphere models (in various configurations) by confronting them with a new and 558 

unique observational data set.  559 

Furthermore, this study is not a final judgement, but a first look that will hopefully 560 

catalyze accelerated development and improvement in coupled land-atmosphere modeling. 561 

Application of cross-component metrics like coupling indices can reveal prime areas for 562 

model development that are not evident from piecewise evaluation of model components. 563 

The next step is intensive, focused sensitivity studies with individual models, preferably 564 

validated in the context of coupled model systems, that will zero in on the problematic 565 

parameterizations. We may also need to revisit some of the fundamental assumptions that 566 

underpin the formulations in models (e.g., Cheng et al. 2017).  567 

Furthermore, it is clear that long-term observational monitoring is highly valuable, and 568 

that value only increases with the duration of data sets at individual sites. Greater spatial 569 
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distribution of flux tower sites, especially into under-monitored regions outside middle- and 570 

high-latitudes, would further increase the overall usefulness to model development. 571 
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Table 1. Specifications for the four land and atmosphere model systems, including time span 766 
of data and spatial resolution. Two-letter abbreviations are used in subsequent figures and 767 
tables; generally for the first letter: N=NCEP, M=NASA (MERRA system), C=NCAR 768 
(Community models), E=ECMWF; for the second letter: L=LSM run “offline”, C=LSM 769 
coupled to GCM, R=reanalysis (except that two MERRA reanalyses are included, so they are 770 
labeled 1 and 2). 771 

System Offline LSM Free-Running  Reanalysis 

NOAA/ 
NCEP 

NL: Noah2.7.1 [1982-
2010] 1°x1° with forcing 
from 
Sheffield et al. (2006) 

NC: CFSv2 [48 years] 
~0.94°x0.94° fully 
coupled 
Shukla et al. (2017) 

NR: CFSR [1979-2009] 
0.31°x0.37° 
Saha et al. (2010) 

 

NASA/ 
GMAO 

ML: Catchment with 
boundary conditions 
from Mahanama et al 
(2015) plus physics 
changes 
[1980-2015] 0.625°x0.5° 
with MERRA-2 forcing 
and corrected 
precipitation  
Reichle et al. (2017b), 
GMAO (2015a,b) 

MC: GEOS5 Heracles-5 
4 p3-M3; LSM as in 
ML [2000-2015] 
0.5°x0.5° with 
observed SST 
 

M2: MERRA-2 [1980-
2015] 0.625°x0.5°  
Gelaro et al. (2017); 

M1: MERRA [1980-
2015] 0.667°x0.5° 
Rienecker et al (2011) 

NCAR CL: CLM4.5 [1991-2010] 
1.25°x0.9° with 
CRUNCEP (Viovy 2013) 
forcing 
Lawrence et al. (2011) 
 

CC: CESM 1.2.2 (CAM4 
+ CLM4.5) [1991-
2014] 1.25°x0.9° with 
climatological SST 

--none-- 

ECMWF EL: HTESSEL 43R1 
[1979-2015] TCo639 
16km 
Balsamo et al. (2015) 

EC: IFS in Athena 
Project 
[1961-2007] T1279 
interpolated to N80 
1.125°x1.125° with 
observed SST 
Kinter et al. (2013) 

ER: ERA-Interim 
[1979-2015] 0.75°x0.75° 
Dee et al. (2011) 

 772 
773 
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Table 2: The average value of the two terms used to calculate the terrestrial and atmospheric 774 
coupling indices using data from FLUXNET2015, each model, and averages from various 775 
groupings of the models. 776 
 777 

  Terrestrial Atmospheric 

  r(SM,LHF) 𝜎(LHF) r(SHF,LCL) 𝜎(LCL) 

FLUXNET2015 0.07 21.2 Wm-2 0.35 432 m 

NL 0.31 18.2 -0.22 221 

NC 0.21 21.5 0.13 412 

NR 0.22 23.1 0.21 396 

ML 0.14 15.9 0.08 366 

MC 0.13 14.0 0.02 291 

M2 0.11 21.4 0.12 287 

M1 0.21 22.1 0.18 340 

CL 0.28 19.1 0.24 191 

CC 0.18 24.1 0.15 357 

EL 0.11 21.6 0.09 371 

EC 0.19 17.7 0.08 350 

ER 0.05 18.8 0.13 291 

All 0.18 19.8 0.10 323 

LSMs 0.21 18.7 0.05 287 

Coupled 0.18 19.3 0.10 352 

Reanalyses 0.15 21.4 0.16 328 
 778 

779 
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Figure Captions: 780 

Figure 1: Location of the FLUXNET2015 Tier-1 sites used in this study. Triangles indicate no 781 

upward shortwave radiation measurements available to estimate surface albedo, pluses 782 

mean no Bowen ratio corrected surface heat fluxes provided, exes indicate neither albedo 783 

nor corrected heat fluxes are available, circles have both. Color of the symbol indicates the 784 

length of data series available. 785 

Figure 2: Scatter of annual total precipitation measurements at FLUXNET2015 sites 786 

(abscissa) to estimates (ordinate) from gridded observationally-based precipitation 787 

analyses (top two rows) or reanalyses constrained by data assimilation (bottom row) 788 

using the value from the grid box containing the FLUXNET2015 site location (unless data 789 

are missing or indicated to be an all-ocean grid box). Dash-dotted diagonal grey line 790 

indicates X=Y. Colors indicate years of available data from each FLUXNET2015 site, 791 

whiskers span range of annual totals from FLUXNET2015 (horizontal) or gridded 792 

estimates (vertical) for years where data sets overlap. Purple line is the best-fit linear 793 

regression of Y on X. Statistics are explained in the text. 794 

Figure 3: Taylor diagram of annual mean surface radiation terms for the 12 indicated models 795 

verified against FLUXNET2015 sites for downward solar radiation (black), downward 796 

longwave radiation (red), upward shortwave radiation (blue) and net radiation (green). 797 

Dot colors indicate mean bias and size shows percentage of stations where the range of the 798 

annual totals from the model overlaps the span from FLUXNET2015 sites (also presented 799 

in tabular form in the upper right). 800 

Figure 4: As in Fig. 3 for surface albedo; annual mean (black) and boreal summer (JJA) mean 801 

(red). 802 
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Figure 5: Propagation of errors estimated from their rank correlations among precipitation 803 

(P), height of the lifting condensation level (LCL), evaporative fraction (EF), sensible and 804 

latent heat flux (SH & LH), surface albedo (𝛼) and net radiation (RNet) across 805 

FLUXNET2015 stations. Ratios show the number of models out of 11 (correlations 806 

involving 𝛼) or 12 (other variables) with p-values below 0.10; p-value shown is based on 807 

the average of correlations across all models. Widths of arrows follow significance of 808 

correlations and no arrows are drawn where p-values are large. The wide double arrows 809 

between EF and heat fluxes denote p-values < 10-12.  810 

Figure 6: As in Fig. 3 for the magnitude of the annual cycle (first harmonic calculated from 811 

monthly means) of sensible heat flux (orange), latent heat flux (cyan) and net radiation at 812 

the surface (green). 813 

Figure 7: As in Fig. 6 for phase of the annual cycle of sensible heat flux (orange) and latent 814 

heat flux (cyan) and net radiation at the surface (green). 815 

Figure 8: As in Fig. 6 for the magnitude (brown) and phase (purple) of the annual cycle of 816 

surface albedo. 817 

Figure 9: Distribution of coupling indices for the terrestrial (x-axis) and atmospheric (y-axis) 818 

legs for the warmest consecutive 3 months of the annual cycle for FLUXNET2015 sites 819 

(white dots; identical in each panel) and for each model as indicated. Colors of dots indicate 820 

in which quadrant that FLUXNET2015 site lies: red = both indices positive; green = 821 

terrestrial positive, atmospheric negative; blue = atmospheric positive, terrestrial 822 

negative; grey = both negative. The white circle indicates the centroid of all FLUXNET2015 823 

stations that are in that quadrant, connected by a colored dotted line to a colored circle that 824 

is the centroid of the same stations’ corresponding grid boxes as simulated by the model. 825 

Numbers in the corners of each quadrant show the number of points in that quadrant 826 
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according to the model and FLUXNET2015 data, separated by a colon, and the percentage 827 

of the FLUXNET2015 sites within that quadrant that the model placed in the same 828 

quadrant. The percentage in red at the upper right of each panel is the overall percentage 829 

of sites where model and FLUXNET2015 agree on the quadrant. 830 

831 
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 832 

Figure 1: Location of the FLUXNET2015 Tier-1 sites used in this study. Triangles indicate no 833 

upward shortwave radiation measurements available to estimate surface albedo, pluses 834 

mean no Bowen ratio corrected surface heat fluxes provided, exes indicate neither albedo 835 

nor corrected heat fluxes are available, circles have both. Color of the symbol indicates the 836 

length of data series available. 837 

838 
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 839 

Figure 2: Scatter of annual total precipitation measurements at FLUXNET2015 sites 840 

(abscissa) to estimates (ordinate) from gridded observationally-based precipitation 841 

analyses (top two rows) or reanalyses constrained by data assimilation (bottom row) using 842 

the value from the grid box containing the FLUXNET2015 site location (unless data are 843 

missing or indicated to be an all-ocean grid box). Dash-dotted diagonal grey line indicates 844 

X=Y. Colors indicate years of available data from each FLUXNET2015 site, whiskers span 845 

range of annual totals from FLUXNET2015 (horizontal) or gridded estimates (vertical) for 846 

years where data sets overlap. Purple line is the best-fit linear regression of Y on X. Statistics 847 

are explained in the text. 848 

849 
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 850 

Figure 3: Taylor diagram of annual mean surface radiation terms for the 12 indicated models 851 

verified against FLUXNET2015 sites for downward solar radiation (black), downward 852 

longwave radiation (red), upward shortwave radiation (blue) and net radiation (green). Dot 853 

colors indicate mean bias and size shows percentage of stations where the range of the 854 

annual totals from the model overlaps the span from FLUXNET2015 sites (also presented in 855 

tabular form in the upper right). 856 

  857 

858 
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 859 

Figure 4: As in Fig. 3 for surface albedo; annual mean (black) and boreal summer (JJA) mean 860 

(red). 861 

862 
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 863 

Figure 5: Propagation of errors estimated from their rank correlations among precipitation 864 

(P), height of the lifting condensation level (LCL), evaporative fraction (EF), sensible and 865 

latent heat flux (SH & LH), surface albedo (𝛼) and net radiation (RNet) across FLUXNET2015 866 

stations. Ratios show the number of models out of 11 (correlations involving 𝛼) or 12 (other 867 

variables) with p-values below 0.10; p-value shown is based on the average of correlations 868 

across all models. Widths of arrows follow significance of correlations and no arrows are 869 

drawn where p-values are large. The wide double arrows between EF and heat fluxes denote 870 

p-values < 10-12.  871 

872 
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 873 

Figure 6: As in Fig. 3 for the magnitude of the annual cycle (first harmonic calculated from 874 

monthly means) of sensible heat flux (orange), latent heat flux (cyan) and net radiation at 875 

the surface (green). 876 

877 
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 878 

Figure 7: As in Fig. 6 for phase of the annual cycle of sensible heat flux (orange) latent heat 879 

flux (cyan), and net radiation at the surface (green). 880 

881 
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 882 

Figure 8: As in Fig. 6 for the magnitude (brown) and phase (purple) of the annual cycle of 883 

surface albedo. 884 

885 
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Figure 9: Distribution of coupling indices for the terrestrial (x-axis) and atmospheric (y-axis) 886 

legs for the warmest consecutive 3 months of the annual cycle for FLUXNET2015 sites (white 887 

dots; identical in each panel) and for each model as indicated. Colors of dots indicate in which 888 

quadrant that FLUXNET2015 site lies: red = both indices positive; green = terrestrial 889 

positive, atmospheric negative; blue = atmospheric positive, terrestrial negative; grey = 890 

both negative. The white circle indicates the centroid of all FLUXNET2015 stations that are 891 

in that quadrant, connected by a colored dotted line to a colored circle that is the centroid of 892 

the same stations’ corresponding grid boxes as simulated by the model. Numbers in the 893 

corners of each quadrant show the number of points in that quadrant according to the model 894 

and FLUXNET2015 data, separated by a colon, and the percentage of the FLUXNET2015 sites 895 

within that quadrant that the model placed in the same quadrant. The percentage in red at 896 

the upper right of each panel is the overall percentage of sites where model and 897 

FLUXNET2015 agree on the quadrant.  898 


